
Logging Data from the Console

Types of Logs
Generated Automatically
Via the Console
Via the Command Line

Initiating Logging
Via the Console
Via the Command Line

Linux
OSX
Windows

Log Locations
Linux
OS X
Windows
File Names

CSV Files
RINEX Files
SBP Files
Options

Log Descriptions
Baseline
Position
Velocity
Rover and Base
Swift Binary Protocol

Types of Logs
The Piksi Console has the ability to generate six types of log files. When you are running the console, with a Piksi

connected via USB, by default, the baseline, position, and velocity observations are logged on your computer in a simple

comma separated value (CSV) file format. Clicking the Record buttons in the Observations Tab will log the raw GPS

observations on your computer in Receiver Independent Exchange Format (RINEX) 2.10 (ftp://igscb.jpl.nasa.gov/igscb/d

ata/format/rinex210.txt) format for the Rover or the Base, depending on which button you click. If you add an argument

when you run the Console, you can generate a full log of the communication between Piksi and the Console. Thus, you may

generate the following log files via the Console.

The Console generates three log files automatically, all encoded in comma separated value (CSV) format:

Contents

Generated Automatically

https://docs.swiftnav.com/wiki/Using_the_Console
https://docs.swiftnav.com/wiki/Using_the_Console#Observations
ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt

Baseline: RTK vectors, generated whenever you connect Piksi to the console and a Float or Fixed RTK solution is
achieved;
Position: standard GPS position, generated whenever you connect Piksi to the console; and
Velocity: standard GPS-derived velocities, generated whenever you connect Piksi to the console.

Users can generate RINEX files by clicking the 'Record' buttons in the Observations Tab:

Rover: detailed RTK data, generated whenever you click 'Record' on the Rover in the Observations Tab; and
Base: detailed RTK data, generated whenever you click 'Record' on the Base in the Observations Tab.

Users can generate the full communication between Pikis and the Console as Swift Binary Protocol by adding a command

line argument when they start the console:

Swift Binary Protocol: detailed Swift Binary Protocol data, encoded in JavaScript Object Notation (JSON) (http://jso
n.org/) format.

Initiating Logging

Once you have started the console:

When it achieves a single point GPS solution, the Piksi Console automatically generates position and velocity logs.
When it achieves a Float RTK GPS solution, the Piksi Console automatically generates baseline logs.
When you press Record in the Observations Tab for either the rover or the base station, you can initiate detailed
RINEX logs for observatons.

In order to initiate more detailed logging of serialized SBP, you need to pass a command line argument when you start the

console. These arguments vary by operating system. On all operating systems, the "-o" PATH command line options can

also optionally be specified. If a directory is passed after the -o option, json logfiles will be placed in this directory and

named according to the system time. If a filename is passed after the -o option, this filename will be used for logging.

1. Pass the --log command line argument to the console.py python script:

$ python console.py --log

1. Open the terminal application.

Via the Console

Via the Command Line

Via the Console

Via the Command Line

Linux

OSX

http://json.org/

2. Start the piksi console with the --log command line argument:

$ open -n /Applications/Piksi\ Console.app --args --log

1. Browse to the console.exe binary in the program files folder
2. Create a shortcut to this executable
3. Right click on the shortcut and choose properties
4. In the “Target:” box, add the command line argument -l (for log), as shown below in Figure 1.
5. In the compatibility tab, choose the “run as administrator” to allow the console to write into the program files folder, as

shown below in Figure 2.

Figure 1. Command Line Argument

Figure 2. Run as Administrator

Log Locations

In Linux, log files are stored in the piksi_tools directory.

On OS X, log files are stored within the Piksi Console package contents. To access the files:

Navigate to the /Applications folder;
If you are using finder, right click on Piksi Console and select "Show Package Contents"
Navigate to the /Contents/MacOS folder

The log files should be the most recently generated files in this folder.

Windows

Linux

OS X

Windows

https://docs.swiftnav.com/wiki/File:Windows-console-log-1b.png
https://docs.swiftnav.com/wiki/File:Windows-console-log-2b.png

On Windows, log files are stored within the application folder. Note that users will generally have to have administrator

privileges on Windows in order for the log file generation to function correctly.

The time in this file name is the time that the Piksi first went into RTK mode (Fixed or Float).

{name}_log_%Y%m%d-%H%M%S.CSV

The time in this file name is the time that Record button was pressed in Piksi.

{name}-%Y%m%d-%H%M%S.OBS

The time in this file name is the time that the console was started.

serial-link-%Y%m%d-%H%M%S.log.json

Options for {name} for CSV files are: baseline, velocity, position
Options for {name} for RINEX file are: Rover, Base
%Y is the four digit year.
%m is the two digit month.
%d is the two digit day.
%H is the two digit hour (military time).
%M is the two digit minute.
%S is the two digit second.

CSV files may be opened as text files or with a spreadsheet application. OBS and JSON files may be opened as text files.

Log Descriptions

The baseline file gives a local NED (north, east, down) coordinate representation of the vector between the base and the

rover, as a CSV text file. The definition of NED is:

North: The X-axis (denoted by Xn) points toward the ellipsoid north (geodetic north).
East: The Y-axis (denoted by Yn) points toward the ellipsoid east (geodetic east).
Down: The Z-axis (denoted by Zn) points downward along the ellipsoid normal.

File Names

CSV Files

RINEX Files

SBP Files

Options

Baseline

The diagram to the right illustrates this representation (in green).

Note that, in this diagram, the green Z-axis points up. However, the

Z-axis output by Piksi points down, in order to comply with the right

hand rule (http://en.wikipedia.org/wiki/Right-hand_rule). This

simply means that the Z-axis Piksi output is generally a negative

number: the orientation is down, so negative values note the distance

from the base to the rover, in cases where the rover is above it.

If you inspect the Baseline Log file, the first few lines will look

something like this...

2015-05-20

13:07:52.599720,-0.6840,3.8750,1.7820,4.3196,6,0x00,960
2015-05-20 13:07:52.699720,-0.6900,3.8780,1.7770,4.3212,6,0x00,960
2015-05-20 13:07:52.799720,-0.6870,3.8770,1.7850,4.3231,6,0x00,960

This baseline file is a CSV version of the SBP message called MSG_BASELINE_NED. This table gives an overview of the

format of the baseline file, by column.

Column Description Example Comments

1 Time 2015-05-20
13:07:52.599720

Full GPS time (http://www.leapsecond.com/java/gpsclock.htm) and date,
down to the microsecond in this format: %Y%m%d-%H%M%S.

2 North -0.6840 The north vector between the base and rover, in meters.

3 East 3.8750 The east vector between the base and rover, in meters.

4 Down 1.7820 The down vector between the base and rover, in meters. Note that this
is the negative of the up vector.

5 Distance 4.3196 The total length of the NED vector between the base and rover, in
meters.

6 Number of
Satellites 6 The number of satellites that Piksi was tracking when this observation

was recorded.

7 Flags 0x00 Describes which mode the RTK algorithm is in: 0x00 = float mode, 0x01
= fixed mode

8 Hypotheses 960 The number of fixed integer hypotheses that Piksi is considering at the
moment.

Standard GPS (single point precision) position location data. If you inspect it, the first few lines will look something like

this...

2015-05-20 13:07:52.484720,49.8769365203,12.3375256482,566.3836,6,0
2015-05-20 13:07:52.599720,49.8769312853,12.3375093868,565.7801,6,0
2015-05-20 13:07:52.699720,49.8769305995,12.3375114272,565.7496,6,0

Position

http://en.wikipedia.org/wiki/Right-hand_rule
https://docs.swiftnav.com/wiki/SBP
http://www.leapsecond.com/java/gpsclock.htm
https://docs.swiftnav.com/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg.png

This position file is a CSV version of the SBP message called MSG_POS_LLH. This table gives an overview of the format of

the position file, by column.

Column Description Example Comments

1 Time 2015-05-20
13:07:37.700003

Full GPS time (http://www.leapsecond.com/java/gpsclock.htm) and date,
down to the microsecond in this format: %Y%m%d-%H%M%S.

2 Latitude 49.8769348989 Latitude in decimal degrees (WGS84).

2 Longitude 12.3375303721 Longitude in decimal degrees (WGS84).

3 Height 561.7785 Height above (WGS84) ellipsoid in meters.

4 Satellites 6 The number of satellites that Piksi used in solution.

5 Flags 0x00 The current state of Piksi's RTK algorithm: 0x00 = Single Point Position,
0x01 = Fixed RTK, 0x02 = Float RTK

The velocity file gives the NED velocities in meters/second as a CSV text. If you inspect it, the first few lines will look like

this...

2015-05-20 13:07:52.485290,0.033000,0.024000,-0.035000,0.040804,6
2015-05-20 13:07:52.600000,0.023000,-0.012000,0.010000,0.025942,6
2015-05-20 13:07:52.700000,-0.055000,0.029000,-0.030000,0.062177,6

This velocity file is a CSV version of the SBP message called MSG_VEL_NED. This table gives an overview of the format of

the velocity file, by column.

Column Description Example Comments

1 Time 2015-05-20
13:07:37.700003

Full GPS time (http://www.leapsecond.com/java/gpsclock.htm) and date,
down to the microsecond in this format: %Y%m%d-%H%M%S.

2 North
Velocity 0.033000 The north vector velocity in meters per second.

2 East
Velocity 0.024000 The east vector velocity in meters per second.

3 Down
Velocity -0.035000 The down vector velocity in meters per second. Note that this is the

negative of the up vector velocity.

4 Total
Velocity 0.040804 The north vector velocity in meters per second.

6 Satellites 6 The number of satellites that Piksi is tracking.

The Rover and Base files are identically formatted. They provide detailed GPS data about each Piksi, encoded as text in

RINEX 2.10 (ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt) format, often used for post-processing GPS data.

Velocity

Rover and Base

Swift Binary Protocol

https://docs.swiftnav.com/wiki/SBP
http://www.leapsecond.com/java/gpsclock.htm
https://docs.swiftnav.com/wiki/SBP
http://www.leapsecond.com/java/gpsclock.htm
ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt

This file represents the Swift Binary Protocol, encoded as JSON (http://json.org), with encapsulated binary. If you inspect

it, the first few lines will look like this...

{"timestamp": 1432839080, "data": {"sender": 1789, "msg_type": 21, "prn": 24, "cf":
749.2676391601562...
{"timestamp": 1432839080, "data": {"sender": 0, "msg_type": 69, "header": {"n_obs":
16, "t": {"wn": 1846....
{"timestamp": 1432839080, "data": {"sender": 1789, "msg_type": 21, "prn": 2, "cf":
-1248.779296875...

The Swift Binary Protocol is fully defined here. The file that is logged represents the full communication stream between

Piksi and the Console via the serial port.

Retrieved from "http://docs.swiftnav.com/w/index.php?title=Logging_Data_from_the_Console&oldid=22853"

This page was last edited on 29 February 2016, at 19:55.

http://json.org/
https://docs.swiftnav.com/wiki/SBP
http://docs.swiftnav.com/w/index.php?title=Logging_Data_from_the_Console&oldid=22853

